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MULTIPLICATIVE CONGRUENTIAL RANDOM NUMBER 
GENERATORS WITH MODULUS 2f: AN EXHAUSTIVE 

ANALYSIS FOR fi = 32 AND A PARTIAL 
ANALYSIS FOR fi = 48 

GEORGE S. FISHMAN 

ABSTRACT. This paper presents the results of a search to find optimal maximal 
period multipliers for multiplicative congruential random number generators 

32 48 with moduli 2 and 2 . Here a multiplier is said to be optimal if the distance 
between adjacent parallel hyperplanes on which k-tuples lie does not exceed the 
minimal achievable distance by more than 25 percent for k = 2, ..., 6. This 
criterion is considerably more stringent than prevailing standards of acceptabil- 
ity and leads to a total of only 132 multipliers out of the more than 536 million 
candidate multipliers that exist for modulus 232 and to only 42 multipliers in a 
sample of about 67.1 million tested among the more than 351 x 101 candidate 

48 
multipliers for modulus 2 

Section 1 reviews the basic properties of multiplicative congruential gen- 
erators and ?2 describes worst case performance measures. These include the 
maximal distance between adjacent parallel hyperplanes, the minimal number 
of parallel hyperplanes, the minimal distance between k-tuples and the dis- 

32 
crepancy. For modulus 2 ?3 presents the ten best multipliers and compares 
their performances with those of two multipliers that have been recommended 
in the literature. Comparisons using packing measures in the space of k-tuples 

48 and in the dual space are also made. For modulus 2 , ?4 also presents anal- 
ogous results for the five best multipliers and for two multipliers suggested in 
the literature. 

Consider the multiplicative congruential random number generator 

(1) {Z0,zI=AZI1 (modM); i=1,2,...} 

with multiplier A and modulus M. For the prime modulus M = 231 - 1, 
Fishman and Moore [9] presented results of an exhaustive search to find those 
multipliers A that perform best, according to a specified criterion, on a bat- 
tery of theoretical measures of randomness. The present study gives analogous 
results for modulus M = 2 32, commonly employed on 32 bit wordsize comput- 
ers, and for M = 2 48, commonly used on CDC computers. Section 1 describes 
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features of this class of generators, ?2 describes the theoretical measures used to 
assess the extent of randomness for each multiplier and ?3 presents results for 
the best ten multipliers A out of the possible 229 = 536, 870, 912 candidate 

32 26 multipliers for M = , and for the five best multipliers among 2 67.1 
million studied for M = 248 . For each modulus, it also lists results for multi- 
pliers suggested in the literature. 

1. PROPERTIES OF THE GENERATOR 

Generators with modulus M = 2f, /3 > 3, have been in common use for 
over thirty years. Their appeal comes from the computational efficiency that 
they offer on binary-word computers by replacing division and multiplication 
operators by shift and addition operations in the modulo reduction step in (1). 
If A +_ 5 (mod 8), and the chosen seed Z0 is odd, then the maximal achiev- 

able period T = 2f 2 is realized before the generator repeats itself. Table 1 lists 
the maximal period multipliers A together with the sequences they generate for 
given seeds Z0 . Because of the greater uniformity over the set { 1, .. , 

we chose to study A _ 5 (mod 8). Note that all maximal period generators 
with M = 2"' produce odd integers only. 

TABLE 1 
Multiplicative congruential generators Zi AZ._ I (mod M) 

(M= 2f, 3 > 3) 

Generated sequence 
A ZO is a permutation of 

5 (mod8) 1 (mod4) {4j+1; j=O, 1, ... , 2fl ,2 _-1} 

5 (mod 8) 3 (mod 4) {4j+3; j=O, 1, ... ,2' 62 1} 

3 (mod 8) 1 or 3 (mod 8) {8j+ 1 and 8j+ 3; j = 0, 1...I, 2fl3 -1 

3 (mod8) 5or7 (mod8) {8j+5and8j+7; j=0, 1, . 2fl ,3-1} 

Since every maximal period multiplier A 5 (mod 8) belongs to the set 

(2a) X/ = {5 + 8(i - 1); i = 1, 2 . 
- 

., 23} 
29 32 45 48 

2 candidate multipliers exist for M = 2 , and 2 exist for M = 2 . Also, 
since 

2i-1 I-2 5 =5(1 + 3 x 8) l5 (mod 8), i= ,2,... 

the set v has the equivalent form 

(2b) vl = 5 2i- I 
(mod 29); i = I,.. 2fl-3} 

which enables one to reduce the number of candidate multipliers that need to 
be considered. 

For every sequence 

(3) Z. _= AZ,_, (mod 23), A c sl i = 1,* *, 23 f2, 
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there exists a reversed sequence 

(4) Z -I - BZ, (mod 23, B c , i = 1, ..., 2 -28 

By direct substitution, 
AB _ mod 2. 

Let A = 5 1 (mod 2f) and B = 2; l (mod 2k). Since the smallest m 
for which 5m I (mod 28) is m = 2 2, one has 2i - 1 + 21 - 1 = 2- 2 

i + j = 23 + 1, so that 1 < min(i, j) < 24. 
Since {Z,} from (3) and {Z.} from (4) have the exact same randomness 

properties, it suffices to study the first 2 -4 candidate multipliers in (2b). For 
M = 32 there are 228 = 268, 435, 456 candidates, and our analysis evaluated 
all of them. For M = 248, the time to evaluate each of the 244 ; 1.76 x 1013 

32 
multipliers is considerably greater than the corresponding time for M = 2 

26 6 
Therefore, our analysis only evaluated the first 2 67.1 x 10 multipliers 
generated by the form (2b). 

2. THEORETICAL MEASURES 

Let U1 = Zj/M, and consider the sequence of points or k-tuples 

(5) k = {Ui k = (U,+l * - ., Ui+k); i = 1, 2, ... }. 

Ideally, one wants the sequence of points %?,k to be equidistributed in the k- 
dimensional unit hypercube for k = 2, 3, .... However, the form of the gen- 
erator (1) limits the extent to which one can achieve this ideal. For example, 
observe that an ideal generator of the integers {4j + 1; j = 0, 1, .. . ., 2-2 _ 1 } 
produces 2(fl 2)k equidistributed points in the k-dimensional unit hypercube 

rk whereas the generator (1) with M = 28, A= 5 (mod 8) and odd Z0 

produces only T = M/4 = 28 2 points in this hypercube. Hereafter, we take 
M = 2f unless otherwise specified. 

2.1. Maximal distance between parallel hyperplanes. One way to study the dis- 
tributional properties of k'j is through the lattice structure that (1) induces. It 
is well known that all k-tuples generated by (1) with these A and M lie on 
sets of hyperplanes of the form 

k-1 

(6) E qj U+j 0 (mod 1), i = 1,., M/4, 
J=O 

where 

(7a) q= (qo .. qk-1l C -M,5 -M + 1, ...,5 -I, 0, 1, ... ., M - 1} 

(7b) q$O0, 
k-1 

(7c) q(A) = E q1A _ 0 (mod M/4), 
J=O 
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and where the distance between any two adjacent parallel hyperplanes is 

(8) dk (q; A, M) =_ I, ,,, 

and Ik (q) is a fixed constant. Without loss of generality (see Fishman and 
Moore [9, p. 29]), we restrict attention to the set d(A) = {q: Ik(q) = 1 
satisfing (7a), (7b) and (7c)}. 

To assess the extent of equidistribution, one has the maximal distance be- 
tween adjacent parallel hyperplanes 

(9) d< (A, M) = max dk (q; A, M) 
q~r&6(A) 

as a worst case measure for the multiplier A in k dimensions. When using (9) 
to compare k-tuple performance for several alternative multipliers, one prefers 
the multiplier that gives the minimal distance, since this implies smaller empty 

regions in Ok for this multiplier than for the other multipliers. However, there 
is a limit to how small this maximal distance can be; in particular, it is known 
that (Cassels [4, p. 332]) 

(3/4)1/4 k= 2 

2- 1/6, k =3, 

(10) (M/4)I d(A, M) > Yk = 21/4, k 4 

2-3/10 k =5, 
(3/64) 1/12 k= 6. 

For M 232 one has 

.2840 x 10-4, k = 2, 

.8700x10-3, k=3, 
d*(A, 232 > .4645 x 10- k = 4, 

.1269 x 10-, k = 5, 

.1993 x 10-l, k = 6. 

For M =248 one has 

.1109 X lo-6, k = 2, 

.2158 x 10-4, k = 3, 

d; (A 248) > .2903 x 10-3, k = 4, 

.1381 x 10 -2, k= 5, 

.3814 x 10- 2 k = 6. 

Originally, Coveyou and MacPherson [5] advocated the minimization of the 
wave number I /dk(q; A, M) and called the procedure the spectral test. 
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2.2. Minimal number of parallel hyperplanes. A second measure of equidis- 
tributions, suggested by Marsaglia [11], is the number of parallel hyperplanes 
NVk(q; A, M) that (6) induces, subject to (7), in k . For a particular A, a 
small number indicates that there exist large regions in Ok that contain no 
k-tuples. Dieter [7] showed that the maximal number of parallel hyperplanes 
that intersect Ok is 

k-I 

N,(q; A, M) = qj - 1. 
j=0 

Note that all these hyperplanes may not be occupied. A worst case measure is 

( 1 1 ) N7 (A, M) = min N (q; A, M) 
q~re (A) 

For several multipliers A, one prefers the one for which N* (A, M) is largest. 
Marsaglia [11] gave the upper bound 

Nk,-(A 5 M) < [ k!(MI 4) Ilk, k= 1 2, 

so that 
46341, k = 2, 

1861, k = 3, 
N;(AA232 )< 401, k=4, 

167, k = 5, 
96, k = 6, 

and 
11863284, k = 2, 

75020, k = 3, 
N;(A 2 )< 6411, k=4, 

1532, k=5, 
608, k = 6. 

Knuth [10, p. 92] pointed out that the ordering of multipliers may differ with 
regard to d,* (A, M) and N,* (A, M) in a way that justifies valuing the ordering 
based on dj (A, M) more highly. Also, see Fishman and Moore [9, p. 311. 

2.3. Distance between points. As an alternative measure of equidistribution, 
Smith [18] suggested the minimal distance between k-tuples, 

k-i 11/2 

(12) c>(A M)= min ? (Z -Zm+j) 2 T = -2 
k I~~<i rn<T M I Mj T22 

iilm Lj=i 0 

Since the total number of points is fixed at T, the smaller ck (A, M) is for a 
k~~~~~ 

given A, the more clustered are points in X . Therefore, when comparing 
several multipliers in k dimensions, one prefers the one that gives the maximal 
c*(A, M). Whereas dj* (A, M) measures distance between adjacent parallel 
hyperplanes in the space of the {Zi}, c (A, M) measures distance between 
points in this space. Since by duality, 1 /c* (A, M) is the maximal distance 
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between adjacent parallel hyperplanes in the q-space, one has (Cassels [4, p. 
332]) 

(13) C>(A, M) < 1/yk(M/4)1/' 

where Yk is defined in (10). The duality also facilitates the computation of 
C (A, M) using the algorithm in Dieter [7] for computing dj (A, M). 

2.4. Discrepancy. Let 

Wi, k = (Zi+l I Z* * i+k) i= 1, ..., T. 

To assess equidistribution, Niederreiter [14] has proposed the discrepancy mea- 
sure 

D~k(A M)=mxnumber of W1 k' ** WNk in - volume of | 
(14) N MkM)ma 

N = 1, ... , T, where M ranges over all sets of points of the form T = 

{(Wi , . Wr)Ial < WI < fl A A A , ak < Wk < /3} . Here a1i and fl are 
integers in the range 0 < ?a < /3 < M for 1 < < k, so that M has volume 

k 
HlA - as) 

Since exact computation of D (k)(A, M) is not feasible, several theoretical 
bounds have been proposed, principally in Niederreiter [13, 15] and Ahrens 
and Dieter [1]. For the case in which no member of the set {(M ) lqq= 0 
(mod 1), q E d'(A)} intersects M and N = T, Ahrens and Dieter [1, Theorem 
5.17] gave the computable lower bound 

k-i 

(15) D(j (A, M) > l/ min A Iq, 

where m denotes the number of nonzero q,, 

M mtn if m = 2 or 3, 
{n m r /(m-l _ nHi, if m>o4,r 

(16) L/m/21 + I 

iHn = E ( ' )' ) (m/2j + I - 
j)in I/(mL1)!I 

For k = 2, Niederreiter [14, 16] provided the upper bounds 

(17) D(2)(A, M) < (1 +a) /T 

and 

T (2)(A, M) < [1 + C(K)logT]/T, 
where a, ..., ap are the partial quotients in the continued fraction expansion 

of A/2f 2, K = max(al, ...,ap), C(K) = 2/log2 for 1 < K < 3 and 
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C(K) = (K + 1)/ log(K + 1) for K > 4. Earlier, Dieter [6] derived closely re- 
lated results based on continued fractions to nearest integers rather than regular 
continued fractions. 

For k > 2 and M = 2f (,/ > 3), Niederreiter [17, Theorems 4.1 and 5.2] 
gave the upper bound 

(19) D()(A, M) k+ R(k)(A, M,2 ), 

where 
R(k)(A, M 2p-2 < (2 log 2M) + 3 (2 log 2M) - 

R (,4, M, 2 < 
(log 2)k - Ilp(k) (A 2/3-2) 

and 
k-I 

p(k) (A, 2fl -2) =mmin max(1,21qJ). 

Unfortunately, the author became aware of these results only after a consid- 
erable amount of computation for this paper had been completed. Therefore, 
numerical results for (19) are not reported. 

3. ANALYSIS 

This section presents results for all multipliers of the form (2b) with M = 232 

for i = 1, ... ., 228 and with M = 248 for i = 1, . .., 226, using an algorithm of 
Dieter [7], as described in Knuth [10, Algorithm S]. Because of the great number 
of candidates, one needs to adopt a screening procedure to identify and collect 
those multipliers that "perform well". For present purposes, the multipliers of 
most interest are those that perform well in k = 2, ... , 6 dimensions relative 
to the constraints that (1) imposes on all lattices in these dimensions. Consider 
the ratios 

(20) S1 k(A, M) = Yk/dk(A, M)(M/4)lk, k = 2, ..., 6. 

As seen from (10), 0 < Sl k(A, M) < 1. Now the closer SI 2(A, M), 
S 6(A, M) are to unity, the better is the performance of this multiplier with 
regard to the achievable bounds in 2, ... , 6 dimensions. Therefore, one way 
to perform the screening is to identify all multipliers for which 

(21) 2min6Slk(A ' M) > So <S< 1, 

for specified S. Based on experience in Fishman and Moore [9], we chose S = 
.80. Note that any multiplier for which Sl k(A, M) > .80 for k = 2, ..., 6 
guarantees that for each k the distance between adjacent hyperplanes does not 
exceed the minimal achievable distance by more than 25 percent. 

32 For M = 2 , 132 multipliers met the criterion, implying a percentage of 
28 4 2648 100 x 132/2 = .49 x 10 . Of the 22 multipliers studied for M = 2 

42 met the criterion. Assuming that these are uniformly distributed over the 
244 possible candidates, one concludes that about 100 x 42/226 = .63 x 10-4 
percent of the multipliers would satisfy (21), and that there are about 11 million 
such multipliers among the 244 candidates. 
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TABLE 2a 
Performance measures for selected 

multipliers in Zi- AZj_ 1 (mod M) 

(M= 232) 

Multiplier Exponent Dimension (k) 
A-5 (mod 2 32) j 2 3 4 5 6 

1. 1099087573 9649599 Si .8920 .8563 .8604 .8420 .8325 
2. 4028795517 93795525 S2 .8954 .7637 .6215 .6657 6576 

S3 .8920 .8401 .8269 .7460 .8547 

3. 2396548189 126371437 Si .8571 .9238 .8316 .8248 .8248 
4. 3203713013 245509143 S2 .7957 .7271 .7862 .6897 .6576 

S3 .8571 .9122 .8377 .8174 .8385 

5. 2824527309 6634497 Si .9220 .8235 .8501 .8451 .8332 
6. 1732073221 96810627 S2 .8290 .8325 .7113 .5458 .6576 

S3 .9220 .7661 .7910 .7707 .7972 

7. 3934873077 181002903 Si .8675 .8287 .8278 .8361 .8212 
8. 1749966429 190877677 S2 .8744 .7153 .8012 .7617 .6367 

S3 .8675 .7825 .7393 .7531 .7329 

9. 392314069 160181311 Si .9095 .8292 .8536 .8489 .8198 
10. 2304580733 211699269 S2 .9691 .7207 .7662 .6537 .6159 

S3 .9095 .8061 .7869 .7932 .7923 

11. 69069 Si .4625 .3131 .4572 .5529 .3767 
SUPER-DUPER S2 .4401 .2117 .3894 .5278 .3549 

Marsaglia [12, n.a.b S3 .4625 .5111 .5430 .5677 .5789 
p. 275] 

12. 410092949 n.a.b S1 .9121 .7670 .5725 .6612 .5842 
Borosh and S2 .9565 .7394 .4190 .5749 .5625 

Niederreiter [3, S3 .9121 .6801 .7628 .4899 .6462 
p. 73, n=30] 

aS= Yk/d(A, M)(M/4) l/k ' = Nk (A, M)/(k!M/4) l/k and 

S3 = Ck (A, M)Wk(M/4)l/ 
b Not available. 

For each selected multiplier and k = 2, ..., 6, we also computed the ratios 

(22) S2,k(A, M) = N, (A, M)/(k!M/4) 1 
and 

(23) S3,k (A, Al) = c(A, M)yk(M/4)l/k 

again using Dieter's algorithm. 
We first present results for M = 232 . Table 2 presents ratios for (20), (22), 

and (23) for the multipliers with the ten largest min2<k<6 S1 ,k(A, M) . These 
actually occur in pairs in which multipliers 1 and 2 have identical {S1 k (A, M) }, 
{S2 k(A, M)}, {S3 k(A, M)} and discrepancies, as do multipliers 3 and 4, 
etc. Although the exact reason for this commonality is not immediately clear, 
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TABLE 3 
Packing measures in the sample space 

(Ok(A, M) = 7k12M[c*(A, M)f /4F(k/2 + 1) 

(M= 232) 

Multiplier Dimension (k) 
A 2 3 4 5 6 

1, 2 2.89 3.51 4.61 3.44 9.30 
3, 4 2.67 4.49 4.86 5.43 8.30 
5, 6 3.09 2.66 3.86 4.05 6.13 
7, 8 2.73 2.84 2.95 3.61 3.70 
9, 10 3.00 3.10 3.78 4.70 5.90 

11 .78 .79 .86 .88 .90 
12 3.02 1.86 3.34 .42 1.74 

Upper 3.63 5.92 9.87 14.89 23.87 
bound 

a unique relationship does exist between exponents in pairs. If the exponents 
are i and j, then i + j (mod 2 28) = 103445124. Table 2 also presents results 
for A = 69069 suggested in Marsaglia [12] and called SUPER-DUPER, and 
for A = 410092949 suggested in Borosh and Niederreiter [3], who showed that 
among all multipliers in (2b), this A has the smallest upper bound on discrep- 
ancy for 2-tuples. A listing of the remaining 122 "best" multipliers is available 
from the author. 

Table 2 shows that: 
(a) The first ten multipliers perform considerably better than the remaining 

ones in the table with regard to the screening measures S, k(A, M), 

S2k(A, M) and S3,k(A, M). 
(b) For the first ten multipliers, SI 2(A, M), ..., S1 6(A M) are remark- 

ably close. 
(c) With few exceptions, the measures S3,2(A, M), ..., S3 6(A, M) are 

also remarkably close and behave essentially as SI, 2(A, M), ... 

S1 6(A, M) do. As expected, SI 2(A, M) = S3,2(A, M) . 
(d) S2,2(A, M), ... , S2 6(A, M) show considerably more variation; no 

doubt a reflection of the suboptimality of these multipliers with regard 
to this criterion. 

We now turn to another method of evaluating performance which derives 
from the concept of packing a lattice with spheres (see Cassels [4]). Recall that 

k 
c* (A, M) is the distance between nearest points in k . Then the volume of 
a sphere with this diameter is 

(24) L(A M) c(A M)/2]k Lk(A M)= F(k/2 +1) 

where I(.) denotes the gamma function. Suppose one packs the lattice with 
such spheres centered on each of the M/4 points Yk in (5) and at the ori- 
gin. Note that these spheres merely touch and that since there are only M/4 
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TABLE 4 
Packing measures in the sample space 

(A, M) =- F(k/2 + 1)M[dk*(A, M)]k 

(M = 2 32) 

Multiplier Dimension (k) 
A 2 3 4 5 6 

1, 2 2.89 3.72 5.41 6.30 7.95 
3, 4 2.67 4.67 4.72 5.69 7.51 
5, 6 3.09 3.31 5.15 6.42 7.99 
7, 8 2.73 3.37 4.64 6.08 7.32 
9, 10 3.00 3.38 5.24 6.56 7.24 

11 .78 .18 .43 .77 .07 
12 3.02 2.67 1.06 1.88 .95 

Upper 3.63 5.92 9.87 14.89 23.87 bound 

TABLE 5 

Bounds on discrepancy 

(M= 232) 

Dimension (k) 
Multiplier 2 3 4 5 6 

1, 2 Lowera 13.09 52.30 123.0 123.0 123.0 
Upper 144.4 

3, 4 Lower 14.28 57.10 57.10 57.10 301.8 
Upper 128.5 

5, 6 Lower 5.727 22.91 57.52 129.7 1250. 
Upper 65.19 

7, 8 Lower 12.74 50.96 58.83 58.83 1927. 
Upper 102.4 

9, 10 Lower 6.300 25.20 25.20 117.1 117.1 
Upper 78.23 

11 Lower 3620. 14478. 14478. 14478. 14478. 
Upper 145130. 

12 Lower .7648 3.059 309.7 309.7 309.7 
Upper 43.77 

a Lower bound = 10 x 1/ minqE((A)n HL-iq,Jo K1)D 
b 

q 
b = 109 x 

in 
+ 

I = 
. Upper bound= 10I x (1?ZEi a1)/T. 
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TABLE 6 a 

Performance measures for selected 
multipliers in Z1 =AZjI (mod M) 

(M= 248) 

Multiplier Exponent Dimension (k) 
A _ 5J (mod 248 j 2 3 4 5 6 

1. 68909602460261 528329 Si .8253 .8579 .8222 .8492 .8230 
S2 .8370 .6336 .6547 .7290 .6165 
S3 .8253 .8902 .7349 .8166 .8209 

2. 33952834046453 8369237 Si .9282 .8476 .8575 .8353 .8215 
S2 .9443 .8243 .7929 .6651 .6987 
S3 .9282 .8964 .8631 .8134 .8089 

3. 43272750451645 99279091 Si .8368 .8262 .8230 .8400 .8213 
S2 .8139 .7261 .7430 .6846 .6757 
S3 .8363 .8178 .7804 .7346 .7482 

4. 127107890972165 55442561 Si .8531 .8193 .8216 .8495 .8224 
S2 .8959 .5944 .6397 .7042 .5606 
S3 .8531 .8062 .8516 .7915 .7484 

5. 55151000561141 27179349 Si .9246 .8170 .9240 .8278 .8394 
S2 .8449 .6128 .6703 .7029 .6428 
S3 .9246 .8216 .8827 .7849 .8119 

6. 44485709377909 66290390456821 Si .8269 .7416 .3983 .7307 .6177 
(PASCLIB) S2 .8418 .6537 .3340 .6677 .5704 

S3 .8269 .6306 .4739 .6496 .4087 

7. 19073486328125c 19 Si .9130 .3216 .6613 .5765 .6535 
(Los Alamos S2 .7239 .2734 .4845 .5339 .5852 

National Laboratory) S3 .9130 .1503 .5299 .2737 .7714 

aSI = /,k/dk(A, M)(M/4)lk S2 = N:(A, M)/(k!M/4)lk and S3 = ck(A, M)Yk(MI4)l/k 
b Durst [8]. 
c Beyer [2]. 

k-tuples, the proportion of the volume of X k packed with these spheres is 
MLk(A, M)/4. Let 

(25) w9k(A, M) = 2 kMLk(A, M)/4. 

Using the lattice packing constants in (10), one has 

3.63, k = 2, 
5.92, k = 3, 

W)k(A,M)< 9.87, k=4, 

14.89, k = 5, 
23.87, k= 6. 

Table 3 lists wk (A, M) for the ten best and the two other suggested multi- 
pliers. The benefits of the ten multipliers is again apparent, since their packings 
are considerably better across dimensions than are those for the more commonly 
used multipliers. 
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TABLE 7 
Packing measures in the sample space 

zk(A, M) = 7r k2M[ck(A, M)]k /4F(k/2 + 1) 
(M 2 48 

Multiplier Dimension (k) 
A 2 3 4 5 6 

1 2.47 4.18 2.88 5.41 7.31 
2 3.13 4.26 5.48 5.30 6.69 
3 2.54 3.24 3.66 3.19 4.19 
4 2.64 3.10 5.19 4.63 4.19 
5 3.10 3.28 5.99 4.44 6.83 
6 2.48 1.48 .50 1.72 .11 
7 3.02 .02 .78 .02 5.02 

Upper 3 63 5.92 9.87 14.89 23.87 
bound 

TABLE 8 

Packing measures in the sample space 

k (A, 
M)-=F(k/2 + 1)M[d* (A, M)]k 

(M= 248) 

Multiplier Dimension (k) 
A 2 3 4 5 6 

1 2.47 3.74 4.51 6.58 7.42 
2 3.13 3.60 5.34 6.06 7.34 
3 2.54 3.34 4.53 6.23 7.33 
4 2.64 3.10 5.19 4.63 4.19 
5 3.10 3.23 7.20 5.79 8.35 
6 2.48 2.41 .25 3.10 1.33 
7 3.02 .49 1.89 .95 1.86 

Upper 3 63 5.92 9.87 14.89 23.87 
bound 

Knuth [10, p. 102] has also used this concept of packing to rate multipli- 
ers. However, his approach relates to packing spheres in the dual space of 
qO1M, ... , qk_ /M . This is done by noting that in addition to d* (A, M) be- 
ing the maximal distance between neighboring parallel hyperplanes in the space 
of %'k, the quantity 4/Md; (A, M) is the minimal distance between points in 
the dual space of qO/M, . .. , qk-I /M . Therefore, the volume of a sphere with 
radius 1/2d*(A, M) in the dual space is 

(26) Wk (A , M) -_ 
F(k/2+ 1)[2Mdk(A, M)] 

Now observe that restrictions (7) determine that the hypercube [-1, 1)k con- 
tains exactly (2M)k *4/M = 2 k+2Mk- k-dimensional points q/M. Therefore, 
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TABLE 9 

Bounds on discrepancy 
(M 2 48) 

Dimension (k) 
Multiplier 2 3 4 5 6 

1 Lowera 1.024 4.095 4.095 4.095 17.30 

Upperb 5.855 

2 Lower .1090 .4360 .4360 3.038 3.038 
Upper 1.862 

3 Lower .4868 1.947 1.947 1.947 8.928 
Upper 3.695 

4 Lower .1187 .7413 .7413 .7413 37.98 
Upper 1.734 

5 Lower .0634 .2536 .3278 .3278 .9077 
Upper 1.435 

6 Lower .1187 1.616 1.616 1.616 28.24 
Upper 1.677 

7 Lower .1045 12.03 12.03 12.03 12.03 
Upper 2.075 

a Lower bound = 1012 x I/ minqE ( (A ) H Joqo#O qj) 
b 12~~~~~~~Ef(A(m11=,,1 

bUpper bound = 102 x (1 + EP=1 a,)/T. 

the volume of this hypercube packed with spheres is 

k+2 k-i 7 1 

Ik(A, M) = 2 M Wk(A, M) = /(k/2 + 1)M[d2x(A M)]k 

which is the measure of packing in the dual space. This quantity is identical 
with the figure of merit suggested by Knuth [10, p. 101]. Note that because of 
the lattice structure in the dual space, this result is invariant when the hypercube 
is translated by a vector of integers. 

Table 4 lists Yk (A, M) for the multipliers of interest. Again, note the better 
performance of the top ten. Knuth remarks that one might say that any mul- 
tiplier for which Yk (A, M) > .1 , k = 2, ... , 6, passes the spectral test, and 
any multiplier for which Yk (A, M) > 1, k = 2, ... , 6, passes the test with 
flying colors. By this standard, the top ten multipliers are untouchable. Table 
5 presents bounds on discrepancy computed from (15) and (17). 

For M = 2 48, Tables 6 through 9 present corresponding results for the 
five multipliers A with the largest min2<k<6 Sik(A, M). It also presents re- 
sults for A = 44485709377909, which is used in PASCLIB, a collection of 
utility subprograms callable from PASCAL on CDC CYBER computers, and 
A = 19073486328125 used at the Los Alamos National Laboratory (Beyer [2]). 
The results confirm the superiority of multipliers 1 through 5, compared to mul- 
tipliers 6 and 7, as expected. A listing of the remaining 37 "best" multipliers is 
available from the author. 
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